Shit. The only things which we can observe directly being our own sensations, or other feelings, a complete descriptive language would be one in which there should be a name for every variety of elementary sensation or feeling.Combinations of sensations or feelings may always be described, if we have a name for each of the elementary feelings which compose them; but brevity of description, and clearness (which often depends very much on brevity), are greatly promoted by giving distinctive names not to the elements alone, but also to all combinations which are of frequent recurrence. On this occasion I can not do better than quote from Dr. Whewell[222] some of the excellent remarks which he has made on this important branch of our subject. I said:What are we going to do with her? When the more obvious of the inductions which can be made in any science from direct observations, have been made, and general formulas have been framed, determining the limits within which these inductions are applicable; as often as a new case can be at once seen to come within one of the formulas, the induction is applied to the new case, and the business is ended. But new cases are continually arising, which do not obviously come within any formula whereby the question we want solved in respect of them could be answered. Let us take an instance from geometry: and as it is taken only for illustration, let the reader concede to us for the present, what we shall endeavor to prove in the next chapter, that the first principles of geometry are results of induction. Our example shall be the fifth proposition of the first book of Euclid. The inquiry is, Are the angles at the base of an isosceles triangle equal or unequal? The first thing to be considered is, what inductions we have, from which we can infer equality or inequality. For inferring equality we have the following formulæ: Things which being applied to each other coincide, are equals. Things which are equal to the same thing are equals. A whole and the sum of its parts are equals. The sums of equal things are equals. The differences of equal things are equals. There are no other original formulæ to prove equality. For inferring inequality we have the following: A whole and its parts are unequals. The sums of equal things and unequal things are unequals. The differences of equal things and unequal things are unequals. In all, eight formulæ. The angles at the base of an isosceles triangle do not obviously come within any of these. The formulæ specify certain marks of equality and of inequality, but the angles can not be perceived intuitively to have any of those marks. On examination it appears that they have; and we ultimately succeed in bringing them within the formula,The differences of equalthings are equal. Whence comes the difficulty of recognizing these angles as the differences of equal things? Because each of them is the difference not of one pair only, but of innumerable pairs of angles; and out of these we had to imagine and select two, which could either be intuitively perceived to be equals, or possessed some of the marks of equality set down in the various formulæ. By an exercise of ingenuity, which, on the part of the first inventor, deserves to be regarded as considerable, two pairs of angles were hit upon, which united these requisites. First, it could be perceived intuitively that their differences were the angles at the base; and, secondly, they possessed one of the marks of equality, namely, coincidence when applied to one another. This coincidence, however, was not perceived intuitively, but inferred, in conformity to another formula. Rob slammed the door shut, locking it from the outside and pocketed the key which had been left in the lock on the outside. He grasped the captured gun in his perspiring hand and walked quickly to the bend in the corridor, then hurriedly climbed stairs to the deck of the boat. She does, gorgeous. Roy grinned, wickedly. ‘Her nose — it’s very pointed!’ He pinched the end of his own nose and stretched it. Imitating the woman’s accent again, he said, ‘I am ze wicked witch of zis house!’ § 6. It remains to examine the bearing of the doctrine of chances onthe peculiar problem which occupied us in the preceding chapter, namely, how to distinguish coincidences which are casual from those which are the result of law; from those in which the facts which accompany or follow one another are somehow connected through causation. Having proven the identity of the charred corpse by a chart of the teeth and the testimony of a dentist, Norton Berkeley, the prosecutor, called Dr. Nathan Beaumont to the stand. We shall fall into no error, then, if in treating of Induction, we limit our attention to the establishment of general propositions. The principles and rules of Induction as directed to this end, are the principles and rules of all Induction; and the logic of Science is the universal Logic, applicable to all inquiries in which man can engage. Almost every one knows Lord Mansfields advice to a man of practical good sense, who, being appointed governor of a colony, had to preside in its courts of justice, without previous judicial practice or legal education. The advice was to give his decision boldly, for it would probably be right; but never to venture on assigning reasons, for they would almost infallibly be wrong. In cases like this, which are of no uncommon occurrence, it would be absurd to suppose that the bad reason was the source of the good decision. Lord Mansfield knew that if any reason were assigned it would be necessarily an afterthought, the judge beingin fact guided by impressions from past experience, without the circuitous process of framing general principles from them, and that if he attempted to frame any such he would assuredly fail. Lord Mansfield, however, would not have doubted that a man of equal experience who had also a mind stored with general propositions derived by legitimate induction from that experience, would have been greatly preferable as a judge, to one, however sagacious, who could not be trusted with the explanation and justification of his own judgments. The cases of men of talent performing wonderful things they know not how, are examples of the rudest and most spontaneous form of the operations of superior minds. It is a defect in them, and often a source of errors, not to have generalized as they went on; but generalization, though a help, the most important indeed of all helps, is not an essential. If he couldnt fix it, he’d have a look in some of the outbuildings — there must be garages here for their cars and lawnmowers. One of them would have a charger or leads, surely? If not, he decided he would walk down the drive until he got a signal on the phone. In statistics, it is evident that empirical laws may sometimes be traced; and the tracing them forms an important part of that system of indirect observation on which we must often rely for the data of the Deductive Science. The process of the science consists in inferring effects from their causes; but we have often no means of observing the causes, except through the medium of their effects. In such cases the deductive science is unable to predict the effects, for want of the necessary data; it can determine what causes are capable of producing any given effect, but not with what frequency and in what quantities those causes exist. An instance in point is afforded by a newspaper now lying before me. A statement was furnished by one of the official assignees in bankruptcy showing among the various bankruptcies which it had been his duty to investigate, in how many cases the losses had been caused by misconduct of different kinds, and in how many by unavoidable misfortunes. The result was, that the number of failures caused by misconduct greatly preponderated over those arising from all other causes whatever. Nothing but specific experience could have given sufficient ground for a conclusion to this purport. To collect, therefore, such empirical laws (which are never more than approximate generalizations) from direct observation, is an important part of the process of sociological inquiry. 282 Almost certainly. Wallingtons flashlight paused on a fence post. Say, he said. “Look at this. There’s a chip taken out of that fence post and it looks fresh. We said just now that the classification of objects should follow those of their properties which indicate not only the most numerous, but also the most important peculiarities. What is here meant by importance? It has reference to the particular end in view; and the same objects, therefore, may admit with propriety of several different classifications. Each science or art forms its classification of things according to the properties which fall within its special cognizance, or of which it must take account in order to accomplish its peculiar practical end. A farmer does not divide plants, like a botanist, into dicotyledonous and monocotyledonous, but into useful plants and weeds. A geologist divides fossils, not like a zoologist, into families corresponding to those of living species, but into fossils of the paleozoic, mesozoic, and tertiary periods, above the coal and below the coal, etc. Whales are or are not fish according to the purpose for which we are considering them.If we are speaking of the internal structure and physiology of the animal, we must not call them fish; for in these respects they deviate widely from fishes; they have warm blood, and produce and suckle their young as land quadrupeds do. But this would not prevent our speaking of the whale-fishery, and calling such animals fish on all occasions connected with this employment; for the relations thus arising depend upon the animals living in the water, and being caught in a manner similar to other fishes. A plea that human laws which mention fish do not apply to whales, would be rejected at once by an intelligent judge.[224] Well, Linda Mae simply stole that picture. That is, she didnt touch the painting itself, but she studied the composition, the coloring and the general theme of the painting. Then she came home and duplicated it and it was sold to a calendar company. That was her undoing, because the calendar attracted so much attention and was so popular that eventually a copy found its way into Switzerland and... well, the thing was hushed up, but people who were in a position to make or break an artist’s reputation learned about it. This doctrine of course assumes that the allotropic forms of what is chemically the same substance are so many different Kinds; and such, in the sense in which the word Kind is used in this treatise, they really are. Chapter Seven I guess so..